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1. Introduction and Summary

The object of this paper is to develop statistical signal detection
techniques for a wide class of stochastic processes with stationary
independent symmetric increments. That is, the basic premise in this
situation is that the increments from a regularly-sampled continuous
parameter process are i.i.d. with a continuous distribution satisfying:
F(x) + F(-x) = 1 for all x. Taking symmetry about zero is no loss of
generality, since one can initially take symmetry amount some constant
¢ and then one can re-define the process to be symmetric about zero.

Let {z(t), t > 0} be a stochastic process of this type, then the
realized data from signal detection viewpoint will be of the following
two types:

(a) Historical Data: X = (Xl, Xz, e, Xm), where Xr =

Z(rd) - Z((r - DAY, Z(0) =0 and A > 0.

(b) Two-sample Data: Q%%X) = (Xl’ X2’ e, Xm; Yl, Y2, YT Yn),
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Xj's and Yj's are defined similar to (a) above with respect to
stochastic processes {Z(t), t > 0 with law p(z} and {z'(t), t >0
with law CZ” }.

The family of all stochastic processes with stationary independent
symmetric increments, in the sequel, will be denoted by Q(SISI). Three
types of detection problems will be treated. These are outlined below
in terms of pure noise (PN) and noise plus signal (N + S); see Bell
(1964a).

(i) Goodness-of-fit Detectors. Here, we detect the problem of

PN: ,{: a\{) € §(SISI) against N + S: o(# X » where K. is

0

completely specified.

(ii) Class-fit-Detectors. This involves detecting PN: aK’ﬁ Q(SISI)

versus N + S: azf ¢ Q(S1s1).

(iii) Two-sample Detectors. This problem is to detect

: L, =&, (X, € QSIST), i=1,2) against N+ S: o?’l ¢ X,
where again xl and XZ are in Q(SISI).

Let o denote the probability that the detector will produce a false
alarm (PFA); and denote by B the probability that the detector will
produce a false dismissal (PFD). The detectors proposed in this in-
vestigation are optimal in the sense that for a fixed PFA o, the
procedure has minimum PFD, B. The organization of the paper is as
follows.

In Section 2 some examples of laws from the family Q(SISI) are

given. Section 3 starts with some basic terminology used. Also, dis-
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cussion about minimal sufficient statistics (M-S-S), maximal statistical
noise (M-S-N) and a non-parametric property for the underlying detection
statistics is given. In part 4 relevant distributions, permutations
and alternative statistics with some examples are discussed. Section 5
treats goodness-of-fit detectors. In the next section 6 class-fit
detectors are developed. The two-sample detectors are dealt with in
section 7. The final part concludes with point estimation and confidence
bounds for F in Q(SISI) which are quite useful in detection methodology.
For various structural results and properties in the case of
stochastic processes belonging to the class §(SISI), the relevant
references are Doob (1953), Feller (1966) and Basawa and Rao (1980). A
different but related concept of symmetry is investigated by Bell and Haller
(1969), Bell and Smith (1969, 1972), and Ahmad (1974). Wiener-Levy pro-
cesses which are closely connected with processes of the class Q(SISI)
are treated in Bell et al. (1980). The detection techniques developed
in this paper carry over to discrete time as well as continuous time

parameter stochastic processes in the family Q(SISI).

Some Examples of Laws from § (SISI)

Example 2.1. (Wiener). Let {z(t): t 2_0} be a Gaussian process
satisfying (a) Z(0) = 0; (b) E(Z(t)) =0, (c) Cov (Z(s), Z(t)) =o©
min (s,t). Then for any A > 0, Yl’ cesy Yn are i.i.d. N(O, GZA),
when Yj = Z(jA) - Z([j - 114). That is the process has SISI's, or

&£ ¢ Q(SISI).



Example 2.2. (Compound Poisson). Let Yl’ Y2, Y. , Yn’ ... be 1i.i.d.
U-6,0); I{N(M): t 2_0} be a H-P-P (Homogeneous Poisson Process)
with parameter XA; and Z(t) = Nit)Yi. Then {Z(t): t > 0} is a
Compound Poisson Process. Further,lfor each A > 0, Yl’ ceey Yn are
i.i.d. F*, with F*(x) + F*(-x) =1 for all x, when Yj = 2(j4) -
Z([i - 1]4).
Example 2.3. (Random Walk). Let wl, W2, ey Wn, ... be 1i.i.d. double
exponential, D - E(A), i.e., £ (x) = %— e—Alxl; and Z(r) = E W,

1

Then {Z(r): r =1, 2, ...} has a law G{f in Q(SISI).

Example 2.4. (Symmetric Stable Distributions). A distribution F(x) is
said to be strongly unimodal, if and only if, the convolution of G

with any unimodal distribution is unimodal (normal and Wishart distributions
are strongly unimodal). If F and G are symmetric about zero and

unimodal distributions, then so is their convolution F+G. Furthermore,

all stable distributions (as defined below) with characteristic functions
given by exp (-|t|a), 0 <a< 2 are unimodal. Let X, Xl’ XZ, ... denote
mutually independent random variables with a common distribution H

and set X; = X1 + X2 + oLl + Xn. The distribution H is stable if for

d
each n there exist constants bn >0 and h such that X; = an + cn

and H is not concentrated at the origin. Consequently, if X,, X

1’

are i.i.d. are stable and symmetric about zero, then {Z(t) = X;,

2,

r=1, 2, ...} has a law a( in Q(SISI).



Remark 2.1. Stable distributions are natural generatizations of the

normal family. Only the norming constants b, = nl/a are possible;
a is called the characteristic exponent of the distribution H(-).
All stable distributions are continuous. For many applications and

other results for stable distributions see Feller (1966).

Sufficient Statistics and the Non-parametric Property

In developing the statistics to be used it is convenient to delineate

two types of distribution-free-ness.

Definition 3.1. (a) A statistic T(:) is NPDF 'wrt. a family Q'

of stochastic-process laws, if there exists a cpf Q(*) such that

P{TE) < t| X} = Q(t) for all t, and for all X e Q'.
@) <
(b) A family {T*(-;X): X € Q'} is PDF wrt a family @',

if there exists a cpf Q* such that

e—

P T*(%;X) < t|X} = Q*(t) for all t and for all SLeq.

Example 3.1. Consider Example 2.1 with Q' = {WLP: o > 0} and data

s ¢ 2 @ 277
Y= (Y, -os Yg)o Let T(Y) =;[§yjl [1v]  and

9
Ty, ) =0 [} y?]A-l. Then T(-) is NPDF wrt &', with
n,
1

Q= F(4; 5), and T*(-,-) is PDF wrt Q' with Q* = Xf,-
The interest here is in the wider family  (SISI). In order to con-
struct the PDF and NPDF statistics, one needs the minimal sufficient

statistic (M-S-S) and its complementary statistic, the maximal



statistical noise, M-S-N, to be defined below.

Notation. Let 5 = (Xl, vees Xn) be the vector of increments, i.e.,

X; = Z(iD) - Z([j - 1]4); 1let 5, (%) = (x|, ..., |X|(m)), the vector

of ordered absolute values; let N,(X) = (e, R*), where
1%, N
€= [e(x), e(X, -..,e (X)], and R* = ROX D, .oy ROX DT

Theorem 3.1. (a) Sl(X) is the M-S-S for Q(SISI), and it is complete.
——— n,
(b) S.(X), € ‘and R* are mutually independent
1%, N "

(c) 61(-) is 1-1 a.e.

e _Q_ LI =
Definition 3.2. Let S(%) be a M-S-S for 0'; GQ%) [S(é), N(%)]
be 1-1 a.e., and N(%) be independent of SQé)' Then

(a) 6(*) 1is called the BDT (basic data transformation) for Q'
and

(b) N(%) is called the M-S-N (maximal statistical noise) for Q'.

Theorem 3.2. (a) 61(¥) = [Sl(é), ngg)] is the BDT for $§(SISI);

(b) Nl(X) = [e, R*] is M-S-N for Q°'.
Y G VIRV

The general rule for employing these statistics in signal dection

is as follows.

Rule of Thumb. (A) For situations involving a specific law, (e.g.,

PN: o(’= "(0)’ employ a PDF statistic based on the M-S-S,



(B) For situations involving the underlying structure of the family
e.g., PN: )f € Q' or PN: 011 = 0*;, employ an NPDF statistic based
on the M-S-N.

This overall principle will be followed in the sequel. However, in
order to make efficient use of this principle, one should consider several

alternate versions of the M-S-S and the M-S-N.

4. Distributions, Permutations and Alternate Statistics.

The only versions of M-S-S and M-S-N, known to the authors, are
those related to maximal invariants or permutation statistics. Sl(%),
given above, is an appropriate maximal invariant, as is Nl(é)'

The set of permutations of interest here is the Sign-Time group,

S*.
n

Definition 4.1. (a) S; = {all permutations of coordinates of % and
changes of signs of coordinates.} -

- . * 1 * 2
(b) Sﬁ(i) = {Y(é)‘ Y € S*} is the S* orbit of ,5'

Example 4.1. Let n = 2, and X = (-5.6, 0.9) then, its orbit is

5% (X) '{?(%): Y € 55}

{(-5.6, 0.9), (-5.6, -0.9), (5.6, 0.9), (5.6, -0.9),

(0.9, -5.6), (-0.9, -5.6), (0.9, 5.6), (-0.9, 5.6)}.

Theorem 4.1. (a) S; is a group of order (n!)(zn)
(b) S; is a wreath product group.

(c) The orbit, S;Q&) contains (n!)(zn) points for almost



every X.
N
Based on these permutations, one can now give useful additional

versions of the M-S-S and the M-S-N.

Theorem 4.2. §;(¥), the S; orbit of Definition 4.1, is a M-S-S.
In order to construct the M-S-N based on S;, onc needs the following

definitions

Definition 4.2. (a) A (measurable, real-valued) function h (-) is

called a B-Pitman function wrt a set, S', of permutations, and a

family ', of stochastic-process laws if
Pth(X) = h(y(X)) &} = 0, unless X = y(X),
N N N, A
for all permutations <y in S' and all af in Q.

(ii) Let R(h(X)) = ZS e {h(X) - h(y(X)) , where
- - veS! -

€(u) =1 if u>0; =0, if u<O0. Then, if h(-)
is a B-Pitman function wrt S' and ', R(h(-)) 1is called a B-Pitman

statistic wrt S' and Q'.

Example 4.2. Let n =3, and h(xl, Xy XS) =X, ¥ 2x2 + 3x3. Then,

h(-) 1is a B-Pitman function wrt S* and §(SISI). Further, R(h(-))

3
is a B-Pitman function wrt S; and §(SISI).

One can prove immediately

Theorem 4.3. (Maximal Statistical Noise Theorem) (a) If h(-) is
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a B-Pitman function wrt S; and Q(SISI), then R(h(-)) 1is (a version
of) M-S-N.
(b) T* is NPDF wrt Q(SISI) iff there exist a (measurable)

function W(-) and B-Pitman function h* such that T*(%) = R(h*g{)).

Corollary 4.1. (a) There are an infinite number of (mutually equivalent)

versions of M;S—N.

(b) Nl(X), of Section 3, can be epxressed in terms of at least

"
one B-Pitman statistic; and
n,,-1

(@) 1f &L e SIS, PR(h(X)) = k} = [ (2M] 7 for
1<k < (n)y(2M.

At this point one has the following formulations of basic statistical

structure

M-S5-8

[xly, ..., IxX[m]

(1) 5,00

(i1) 830X {Y(é): Y € §*}

(iii) S,(X) = Gx(+) (of Def. 4.3 below)
n n

M-S-N

(1) N = [e(X), ...y X5 ROUX D, ooy ROX D)

(i1) N (X

and Q(SISI).

R(hg§)), where h(*) 1is a B-Pitman function wrt S;
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In order to make use of some standard nonparametric procedures, one

introduces the entities below.

Definition 4.3. Let [ (*) satisfy, F(x) + F(-x) =1 for all x.

i

(a) GF(-) is defined by GF(Z) 0, for =z <0, and =2F(z) -1

for z > 0.

1]

(b) GX(+) is defined by G*(2) ! Y (z - [xXIG).

One proves easily

Theorem 44 . S_(X) = G*(-) 1is a M-S-S.
e O A n
Further, it follows from Birnbaum and Rubin (1954}, and Bell (1964a, bh),

that

Theorem 4.5. (PDF Theorem) Each statistic of the form
SIGL (X (1)), -ovy GLCIX[ ()] or ¥*(6X())

is PDF wrt Q(SISI).

This theorem will be used in constructing all nrocedures for one of
the signal detection models of the sequel.

One final statistical tool will be introduced in this section. It is
a slight generalization of the method of Durbin (1961) and Bell and
Doksum (1965), and should be employed primarily to avoid certain distri-
bution problems.’

Let 6%)¥[SQLIM9],\mme GOLfﬂy, and N%) are res-

pectively, the BDT, M-S-S and M-S-N of a family ' of stochastic
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process laws. Let é be data governed by a law 5( (usually unknown)
in ', and let be generated by a law éf; (known) in ' and

Y
"N
be independent of X
N

Definition 4.4. (a) x is called E-S-N (Extraneous statistical noise).

(b) X' = 51[8(%), N(X)] 1is called R-S-N (randomized statistical
n

noise).

Example 4.3. Let 5 ES (Xl, ey X25) be the increments of data governed

by a law o{F in Q(SISI). Let Y = (Yl, R ng) be the increments
f\J -

of a Wiener process (See Section 2) with o = 1/4. Then Xl’ .. X X25

are i.i.d. F(:), unknown; and Yl, ey st are i.i.d. $. One

simple version of the M-S-S is Sl(z) = (|X|(1), .uFm, [X[(ZS), in
which case one chooses N, (X) = [e(X)), --h E(X)e)5 R(IXII), ey
R(|X25|)], and, then 6(%) = [Sl(i), Nl(é)]' One then, forms
SRV, «oy 1Y1@)5 6X)), ovs €000 RUX D, oony RO =
(¥]» o5 Yjg), where Yi=[2e (X)) - l]IYj](R(|Xj|)). This means each
X is replaced by that Y, which has the same absolute-value rank and
same sign. Then, it can be proved that Y:, ..., Yés are i.i.d.
N(0,1).

These ideas are formalized in the theorem below.

10 et Xn) and

Yn) be independent, and be generated by laws é( and J(*,

Theorem 4.¢. (Randomized Noise Theorem). Let % = (X
I = (Yl’ N

respectively in Q'. Let d&(-), S(X) and N(X), be respectively, the
P y ~ £ p

BDT, M-S-S and M-S-N for Q'. If I’ = (Y!, ..., Yﬁ) =
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- d
s S, N(X)], then Y' Sy X *e Q.
" "
Thus, the distribution of the FE-S-N, Y, has been imposed on the
V]
data while the M-S-N of the data is preserved.

Now, one is in a position to treat the pertinent inference problems.

5. Goodness-of-fit Detectors

The situation to be treated here is

PN: J=XOEQ(SISI) vs N+S Xt X

0

One notes that the law ;(O and the sampling spacing A, uniquely
determine the common distribution FO’ of the independent symmetric
increments Xj = Z(jA) - Z([j - 1]14), for j =1, 2, ..., n, where

Z(0) = 0.

Example 5.1. (a) In Example 2.1, 3(6 is such that FO = N(O, OZA).
(b) In Example 2.3, if A = 3, then ‘FO is that distribution function
with characteristic function ¢(u) = (1 + tz/k)-s. In Fxamnle 2.2., Fn
is the distribution function with characteristic function

d(u) = exp {-AA[1 - ¢*(u)]}, with ¢*(u) = (ue)-1 sin uf.

For a given constant sampling spacing A, one can rephrase the

detection problem as

* . = * 0 o
PN*: F FO eQ vs N+ S: F # FO

where Fo(x) + FO(—x) =1 for all x, i.e., FO exhibits symmetry wrt 0.

This being the case, one should base the decision rule on the M-S-S:
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Sl(§) = [IXI(]), vy ]X|(n)], and a PDF statistic using the cpf

G. , where G.(x) = 2F(x) -1, x > 0.
FO F

Hence (by Bell (1964b) and Birnbaum and Rubin (1954)) ,one should
consider decisions based on statistics of the form w[GF (lXI(l)), e,
U

GFO(IXI(n))].

Decision Rule 5.1. Decide N + S iff supo G;(z) - GF (z) >d',
z 0

1 e (z - |X](j)), and d' = d'(a,n) chosen so as

1

it ~13

where G;(z) =n
j
to achieve FAR,«.

Decision Rule 5.2. Decide N + S iff f [G;(z) - GFO(Z)]szFO(z) > w* =
w*(a,n).

Of course, several other goodness-of-fit statistics could have been
used. [See, e.g. Bell (1964b), Model I ].

If one knows that the signal has the effect 6f vielding a specified

distribution, H for ,5* = (XI,

one would prefer a decision rule of the form below. [The problem here

would be PN: oL = xo vs N+8: X = Xl].

.» Xf), where X; = |X|(3), then

: k
Decision Rule 5.3. Decide N + S iff h((x*, ..., xi) > C* 7 ER (x?),
1 0 -

where C* = C(a,k) and gé-) and h(-) are the approvriate densities.
0

These three decision rules will be illustrated with data in the

appendix.



6. Class-Fit Detectors.

Here one has the detection nroblem PN: c;( € Q(SISI) vs N + S:
cQ’st $2(SISI). Since this problem does not concern a specific value of
the parameter (or law), one is led to NPDIF statistics and M-S-N. Onc

useful version is Nl(i) = [e(X)), e (X); R([Xll), - R(IXn|)].

n
Decision Rule 6.1. Decide N + S iff T*(X) = Z £ (X.) > ¢ or < ¢,
na, 1 17— 1 - 2

where cj = cj(a,n).

This, of course, is a Sign Detector or a Threshhold Detector. It
makes no use of the rank vector.

In order to make usc of all of the components of Sl(i)’ one

introduces the Wilcoxon 1-sample statistic.

n
Decision Rule 6.2. Decide N + S iff W*(X) = ) & (X)R(|X.]) < k
n-a, 1 1 i -1

or >k where kj = ki(u,n).

2)

The statistics pmployed in the two decision ryles above involve
statistics which are well-tabulated. However, these statistics both
have discrete distributions, and it is necessarv to turn to randomi:zed
procedures if one wishes to achieve certain particular PFA's,

One such procedure is based on E-S-N (extraneous statistical noise),
i.e., I = (Yl, ey Yn) independent of the data and generated by a
known law ;f in  Q(SISI).

Let Y ., Y be i.i.d. N(0,1). This corresponds to data

1’ n
% = [2(d), 2(28), ..., Z(nA)] from a WLP satisfying wu(t) =0 and
OZA = 1. When the process {Z(t)} is independent of the data so are
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the Y's.

From Section 4, one knows that the BDT, &(-), 1is such that
8(X) = [5,(X), N (], where S, (X = [[X[(D), ..., |X](m] and
Nl(i) = [e(Xl), cees E(X); R(|X1|), oo R(]an)]. In order to anply
the Randomized Noise Theorem (Theorem 4.6), one forms Y' = (Y!, ..., Y%) E

Y
-1 . . .
8 [Sl(x), Nl(%)]' In this case Yj = [2¢€ (Xj)'lJlel(R(Ile))' This
- ' 1 t i

means Nl(é) Nl(x ). By Theorem 4.6, Yl’ ey Yn are i.i.d. N(0,1)
under PN: a<.€ §1(S1S1). One useful decision rule based on the Kolmogorov-
Smirnov statistic is then.

n
Decision Rule 6.3. Decide N + S iff sup |% Y (z - Y}) - o(z2)| > dr,
pA 1

where d' = d(a,n).

Again one notes that Decision Pule 6.3. could have employed any
goodness-of-fit statistic. (See, e.g., Bell (1964a); Model I Detectors)).
A different type of detection procedure is developed if one employs

a different version of the M-S-N.
Let S; (See Definition 4.1) be the set of sign-time permutations
of coordinates of % = (Xl, n., Xn), and let hQi) = g j Xj. Then one

has the following result.

Theorem 6.1. (a) h(-), above, is a B-Pitman function wrt §(SISI)
and S*. g
n
(b) R(h(X)), as in Definition 4.1, is M-S-N. v
"
(¢) Under PN, R(h(X)) ~D - U{1, 2, ..., k*}, i.e., has a discrete
"
uniform distribution over the integers {1, 2, ..., k*}, where

k* = () 2M.
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Decision Rule 6.4. Decide N+ S iff R(h(X)) < b, or > b2.
I\J - -

where b = (n!)(Zn)(%) and b, =1+ (1 - %J(n!)(zn).
Of course, one could construct an analagous decision rule for
each B-Pitman function.
These decision procedures are illustrated in the appendix.
The final detection problem of this naper concerns the equality of

two stochastic process laws.

7. Two-Sample Detectors.

The detection vroblem considered here is
PN: 62,1 = ax; vs N + S: é(l # 9(2

where ;fi £ Q(SISI).

Consider the situation where % = (Xl’ ceey Xm) is generated by a?l

and Y = (Y., ..., Y ) is generated by é{ and is independent of X.
™ 1 n 2 : Iy

Under PN, Z = (X,Y) = (X,, ..., X ; Y
n, Ny 1

T R Yn) = (Zl’ o o [Byn)

N
ijs distributed as a random sample from an (unknown) F(-), symmetric wrt 0.
Since no specific value of a parameter (or law) is involved, one nceds

an NPDF statistic. Such a statistic must be based on some version of

the M-S-N, e.g., Sl(%) = [C(Zl), S (ZN); R( Z1 )s .., R( ZN )].

7’

n
Decision Rule 7.1. Decide N + S iff W =) R(IZi|) >b, or <b
1 .

where bj = bj(u,m,n).

Decision Rule 7.2. Decide N + S iff
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=R

m 1 m
sup | )lj (z - IXIG) -+ I G- IYlagnl > d' = d@,m,n)
z 1

Decision Rule 7.3. Decide N + S iff

3
m

—s

1 n
V(RIXjI) 2= ; V(R([le)) >a or <a,

s +--y V_are i.i.d. ¢ and independent of the data.
1 n

This last decision rule is based on the Theorem 4.6. (See also, Bell

where V

and Doksum (1965)). The first and second rules above correspond to the
Wilcoxon Rank-Sum statistic, and two-samnle Kolmogorov-Smirnov statistic,
respectively.

The techniques here, although concerned with  Q(SISI) are closely
related to many of the usual two-sample non-parametric detectors. (See,
e.g., Bell (1964a; Model II Detectors)).

Numerical examples of the decision rules here are given in the

appendix. We conclude this section with two more detectors.

(A) A Modified Two-Sample Detector

The simplest rank detector (statistic) for the pure noise situation

. N
of univariate symmetry about zero is: T = 2 € (Zi) where €(y) =1
i=1
if y >0 and zero otherwise. Under the null hypothesis of PN, T has
a Binomial distribution with parameters N and % . However, it is clear

that for any asymmetric distribution with F(0) = %—, the power of any
test based solely on T is equal to its PFA,

- s | ' = .
Let T =k, and define {Z!, ..., ZN—k} {|Zi|. Z; < 0} and
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{Z{, 5.8, Zﬁ} = {IZiI: Z, > 0}. There are now two new samples on which
one can try any two-sample detection procedure such as the Kolmogorov-
Smirnov detector, Cramer-von Mises detector, Mann-Whitney-Wilcoxon
detector, Fisher-Yates-Terry detector etc. Fach of these tests is a

most powerful invariant detector against specific N + S alternatives,
see Lehmann (1959).

The power of such tests is equal to PFA for S + N situations with
the Z distribution symmetric about zero. There is a slight difficulty
in applying detectors based on comparisons of {—Zj} and {Z;} when
m or n 1is small. For this latter reason, one can introduce the
modification below. (The development below is a slight extension of
some ideas in: Dippo, C. (1970)__ Distribution-free tests of univariate
symmetry about zero, Class Proiect, Universitv of Michigan.)

Let T(m,n) be an arbitrary two-sample detector with PFA o and
critical region C(d;m,n). Then let w(%) =1 3f T« k1 or > 52; =1

if k, <T f.kz and T(m,n) € C(a;m,n); and zero otherwise. The

1
power of detector ¢ at F, = P{Reject PN|S + N is true} is
f pdF, = P{T < kllFl} + P{T > klel} +
k2
+ ) P{T = 3} P{T(j,N-i) € C(a;j,N - i)}
i=ky
k,-1
1 R N N . ..
L N-
=1 ¢m Qe ) C;pyay *
j=1 _j=k2+1
I -
+ 1 ¢ PITG,N-3) € C(33,N-)} p] @y
j=k1
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= < = -
where p, = P{Z OIFl} and q, =1 - p,.
This procedure eliminates the difficulties when m or n is small, but
the power is still o = PFA when one has univariate symmetry about zero -

a desirable property.

(B) A Chi-Squared Detector

Under the PN situation, divide the domain of Zi's into sections
symmetric about zero by the set of numbers '{aj, i=0, +1, +2, ..., +k}.
The probability of falling in the interval (aj-l’ aj), i > 1 under the
PN case is the same as falling in the interval (—aj, -aj_l). The
aj's may be chosen arbitrarily, be based on some prior knowledge, or,

better yet, be based on the ordered statistics.

Let Z..., ..., 2 be the order statistics of the {|z.]}.
(1) (N) | Jl
1f the desired number of intervals is k, let rj = jN/k and aj = Z(r )’
j
j=1,2, ..., k. Then
N
Nlj = izl & (Zi)[e(aj - Zi) - e(aj_1 - Zi)]

N
sz = 121 e.(—Zi)[e(aj - Z.) - e(aj_1 - zi)].
Let N =) Nj; and N = ) N,;- Therefore, under the PN
] J
situation, the detector
N, N 2
Z Z [Nij - II:I 2‘] [N NN ]
i j 1-72-

is DF, and has an asymptotic null distribution of a Chi-squared statistic
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with (k - 1) degrees of freedom.

8. Point Estimation and Confidence Bounds for Fdf with X in Q(SISI).

(A) Point Estimation

Recall the definitions of SISI and symmetric (about zero) probability

laws, that is
Q(SYM) = {F(:): F is continuous and F(x) + F(-x) = 1 for all «x}

Qesisyy = {2 Yi, ..., Y oare i.i.d. F e Q(SYM) for all

A >0, where Yi = Z(jA) - Z((i - 1A), Z(0) = 0}.

Example 8.1. Let Xl’ Xz, ey Xm’ “en be i.i.d. Cauchy with parameter
5]
w(ez + xz)

(0,6), C(0,6), that is f(x) = , =< x <o gand let

n
Z_ = z Xj' Choose A =3 and set Y1 = 23, 9 6 3 3

Then, for {Zm: m> 1}, (a) J{ e Q(SISI); and () Y., ..., s

i.i.d. C(0, 38) which belongs to Q(SYM).

To estimate F(x*) for x* > 0, clearly a natural estimator is

~ _1 m
F(x*) = F (x*) = m 21 € (x* - xj).

]
If x* <0, use estimate 1 - F(-x*). Obviously,

E{ﬁ(x*)} = F(x*), Var{ﬁ(x*)} = F(X*)[;‘F(X*)l - F(X*);‘;('X*) ,

and mﬁ(x*) is a Binomial variable with parameters (m, F(x*}).
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An optimal estimate for F(x*) can be obtained by using only the
M-S-S, S(%) = {|X|(1), ceey |X|(m)} or another, easier to handle,

version of it G*(-), where Gi(z) =m ' ] e (z - [X|()).
i=1

Lemma 8.1. (a) P{|X1| f_z} = 2F(z) - 1, z >0 and zero otherwise,
(b) E{G;(x*)} = 2F(x*) - 1;

2[1 - F(x*)][2F(x*) - 1]
m

(¢) Var{G;(x*)} =

On the basis of the definition of G;(-) and the above lemma, define

another estimator of F(x*) as

* *
Gm(x ) + 1

v
pm(x*) = 5
_
Theorem 8.1. (a) E{Fm(x*)} = F(x*);
n
1 - A1 - F(x*)J[2F(x*) - 1]
(b) Var{Fm(x )} = ™

n
(c) Fm(x*) is the UMVU estimator for F(x*).

o
* * =
@ 0< Var{f(x ) S 2F§;(i*) 1 .S'%
Var F(x*)
o
Thus, one can do better by using the estimator F(x*) which uses the

symmetry property of the underlying process.

(B) Confidence Bounds

In this section the aim is to establish that when one knows the underlying

distribution function is symmetric about zero, then one can achieve a
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confidence region having 50% less interval length as compared to
the usual Kolmogorov-Smirnov-type confidence regions. To out it in
another way, it means that with the same confidence level (1 - a}100%
of the former confidence interval has half the width than that of the

latter. First we state some relevant results which can easily bhe proved.

Theorem 8.2. (a) For Yl’ : IENG Ym i.t.d. with F e Q(SYM), the M-S-S

is S(Y) = []Y](l), N |Y|(m)], that is the ordered absolute values.
"N

(b) |Y1| v GF’ where

2F(z) - 1, for z >0

GF(Z) =
0, otherwise
1 {1 + G_(2)] z >0
(¢} TF(z) = 2 F g -
1
7 11 - Gu(-2)], 2z <0

Definition 8.1. QZ(RI) = {G: G is continuous, G(0) = 0}.

Theorem 8.3. F Dbelongs to {(SYM), if and only if, GF is a member

+
of the class Qz(Rl).

Definition 8.2. Let d(a,m) be such that

a =P {sup le(z) - H(z)| > d(a,m)},
Z

where Vl’ A Vm are i.i.d. with distribution H(:) which is

£ (z

continuous; and H (z) = m
1

ne~13

j "V
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Let Y, ..., Y be i.i.d. with F e Q(SYM). Then |Y1|, cees Y

m
. . +
are i.i.d. with GF £ Qz(Rl).

Lemma 8.2. The following statement holds:

P{G;(z) - d(a,m) < GF(z) < G;(z) + d(a,m) for all z} =1 - q,
where G;(-) is the empirical distribution of the |Y]|'s.
Lemma 8.3. (a) A consequence of the above result and the previous

development is that:

* Yk
1+ Gm(z) 1 1 +6 m(z)

p{ S - E'd(a’m) < F(z) < — T+ % d(a,m) for all =z}

=1-a-= P(A+), say.

- G*
1 G m(y)
2

- G*
1 - GAY)

) P(AT)=1-0a="P/{ 3

= %—d(a,m) < F(y) < + %—d(a,m)

for all y < 0}
= P(A7), say.

(c) PIA"Y =pP{A} =pPA"A A} =1 - qa.

Definition 8.3, Let L;(z) and Lm(z) be defined as follows

2+ G52)] + 2 d(@,m, z20
14 (z) =

=

[1-6:(-2)] + 7 d(a,m), z<0



- 24 -

1+ 6] - zd@m, z30
Lm(Z) =

lin-eear-Ltdem, z<o

2 m :‘-) 2 }

Theorem 8.4. Let Yl, ceey Ym be i.i.d. with ¥(:) in Q(SYM) and
1

m
G¥(z) =m = ] € (= - Y] (j)). Then
j=1
(a) P{Lm(z) < F(z) < L;(z), for all =z} =1 - a.

(b) L;(z) - Lm(z) = d(a,m) for all =z,

The above result combined with the statement below helps achieve our

aim set-in the beginning of this section.

Theorem 8.5. Let Vl’ v g Vm be 1i.i.d. with distribution H(-) which

is continuous. Then

(a) P{Hm(z) - d(a,m) < H(z) < Hm(z) + d(a,m) for all z} =1 - a

(b) [Hm(z) + d(a,m)] - [Hm(z) - d(a,m)] = 2d(a,m) for all z.

These results can be presented in a slightly different form when one
constructs the following empiric-type distribution - the empirical

distribution of data:

Yy, - IYlm - 1, ..., - Y] Y@y, ..., fYlm

Definition 8.4. Let G;*(z) be as below:

m

m
Grea = Go (L e - @)« ) e e Y.
j=1 j=
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Lemma 8.4. With probability one, ]

(a) G;*(z) = %—{1 + [G;(z) - G;(—z)]}, for all z; and

(d) Gr*(z) [1+Gi(2)], 220

= N

[1 - 6:(-2)], z<0

Theorem 8.6. Let Yl, TXEs Ym be i.i.d. with F(:) in Q(SYM). Then,

P{Gr*(2) - %d(a,m) < F(z) < Gre(2) + -é-d(_a,m) for all z}

The results of this section "fit in" well with the idea that in

constructing PDF (parametric distribution-free) statistics for Q(SISI)

one should use only the M-S-§S, SQ%) = [IY](I), 2 d |Yl(m)]. To use

any "additional aspects of the data" should be inefficient.
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APPENDIX FOR Q(SISI) TFAMILY

ILLUSTRATIVE EXAMPLES AND GRAPHS +

Example 1. To illustrate the Goodness-of-fit detection procedure we considered
the data given by Dewey (1963). The graph of the data is shown in Granh

1(a). Figure (b) shows the power spectrum of smoothed U.S.A. immigration
data of Dewey. By taking the period 1830° to 1950 we looked at

residuals of logarithms of immagration data, after removal of trend by

a simple seventeen-point moving average - values increased by 2, see

Kendall (1976, p. 103). Let Xi denote the jth vyecar residual value

W

for the period considered, then set W, = X, + ... + X oL+

1 1 100 "2 X
here A =10 and n=1, 2, ..., 12. This

X207

W T X

v el
process gives a probability law which belongs to €(SISI) but is not
symmetric about zero. The aim is to detect: - PN: )f € Q(SISI) (with
symmetry around 18) against N + S: ;f = U(lO 50) Ul indicates uniform

distribution. The ordered Wj's with computations and decision rule are

presented below.

+This Appendix was prepared with the aid of S-M Lee and A. Mason of
San Diego State University.

*Dewey, E. R. (1963). The 18-2-year cycle in immigration, U.S.A.,
1820-1962. Foundation for the Study of cycles, Inc., Pittsburgh,
PA.



Table 1: U.S.A. Immigration Data 1830-1950.

Ordered Data Computations
y BRI YG) _i-1
() 1 40 40 12
18.5484 -0.3804 0.4637
19.1244 -0.3114 0.3948
19.1562 -(.2289 0.3122
19.1853 -0.1463 0.2296
19.3680 -0.0675 0.1509
19.5932 0.0102 0.0732
19.8373 0,0874 -0.0041
20.4530 0.1553 . -0.0720
20.7822 0.2304 -0.1471
20.8606 0.3118 -0.2285
21.0688 0.3899 -0.3066
22.0959 0.4476 -0.3643

The detection procedure used is the Kolmogorov-Smirnoy statistic

s W_. W . .
- J . 20G) (G) _i-1
Dy, = max {max [35 40 * 40 71
= 0.4637
With PFA o = .01, the critical value is d12_005 = 0.449, see Conovor

(1971, p.397).

Decision Rule: Decide N + S since D12 > d12;005’

Example 2. (Random walk). To explain the detection procedures for the

Class-Fit problem, 30 observations were generated from a Cauchy distribution
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with location and scale parameters, respectively, zero and 2. Thus,

s .. o '.‘. . . S J 2. ‘ i = %
Yl’ Y2, s Y30 are 1i.i.d r. Vs from C(0,2) Let Z(3) L Yk’

then {Z(j)} 1is a stochastic process with law in the fami ly Q(SISI).
Choose A =3, and set X1 = 7Z(3), X2 = Z(6) - Z(3), ..., X10 =
Z(30) - Z(27). Clearly, {Z(j)} forms a random walk and {Xi} is a

sample from it. For the plot of the data seec Graph 2.

Tabkle 2. Random Walk Data

Data Computations
, = 0.5143 Y, = -97.8308 X e(X) | RUX; D
S = SIS .~ -105.2880 15.7933 1 6
2 X -39.1513 -103.4208 0 10
14 3173 -8.3701 -1.7487 0 1
14.0243 -6.9749 -1.8538 0 2
87 6275 2.6035 -7.4049 0 4
_89. 3277 0.0598 59.4836 1 9
-90. 7272 -4.5361 41.7548 1 8
- -0.1942 -2.7977 0 3
S 2.9335 -30.4395 0 7
. 3.1908 11.6435 1 5
-94.6573
-30.6337
-91.2300
-31.9554
-90.6965
-29.7549
-96.9435 % _ = -5 5905
Y =-98.5349 30 )

To detect PN: a( € Q(SISI) versus a('t 2(SIS1), the procedure is

as given below.
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The Sign Detector. One proceeds as follows:

10
Tjo (%) = 321 e (X)) =4

* . = = = * Q = =
P{T}y< 15n = 10} = 1 - P{T}, > 8; n = 10} = 0.0107

Therefore, a = 0.0214; and one decides N + S, if and only if,

TIO(X) >8 or < 1. The conclusion is decide PN, with PFA =o = .01.
A =

The Wilcoxon-Signed-Rank Detector. In this situation one computes

10
M E (xj) R(|Xi|) = 28. We decide N + S, if and only if

j=1

*
Wlo(ﬁ)
* > <
Wlo(i)‘_ k1 or __k2, where

t(a/2, n) = t(.005,10) = 52

e
1]

- n(m+ 1)

5 = > - t(a/2, n) = 3

("t" denotes '"tabulated value'" obtained from Hollander and Wolfe (1973)).

Since WIO is outside the critical region, one decides PN.

N(t)
Example 3. (Compound Poisson Process). Let Z(t) = § Tj’ where
§1Eh]

{Tj} are i.i.d. r. vs. from double exponential with parameter 4;
{N(t)} is homogeneous Poisson process with parameter 0.5; and {Tj}
and {N(t)} are independent. Table 3 below gives the generated data

from this process. The plot for jumps is shown is graph 3.
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We sample every three units, that is the basic data is

{z(3), 2(6), ..., 2(30)}. Let X = Z(3), X, = 2(6) - Z(3), ...,

XIO = Z(3) - Z(27). The interest here is to detect PN: Yéz; e Q(SISI)
against N + S: )f¢ (SISI). The appropriate detection statistic is the
Wilcoxon one-sample statistic. The essential computations are as follows:

Compound Poisson Data

Xi=2(3j)—
iz 23G-1) | RAxD
1 0.4576 0.4576 5
2 1.3184 0.8608 8
3 2.1871 0.8687 9
4 1.7750 -0.4121 4
5 2.7044 0.9294 10
6 3.0626 0.3582 3
7 3.1917 0.1291 1
8 2.7303 -0.4614 6
9 2.4915 -0.2388 2
10 3.0675 0.5760 7
12
Decision Rule. Since WIZ = Z € (Xi)R(|Xi|) = 43 does not fall in the
g T

critical region {WIZ > 52 or Wy, < 3} with PFA o = .01, we decide PN.
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Table 3. Compound Poisson Process Data

Interarrival Times "Jumps"' Cumulative .Jumps
1.0895 0.1250 0.1250
0.1005 0.5383 N.6633
0.4816 -0.2057 0.4576
2.4213 -0.0637 0.3939
1.5793 -0.0065 0.3874

10.2320 0.9310 1.3184
2.5747 0.3350 1.6534
2.3683 0.0680 117214
0.7450 0.4657 2.1871
1.9194 -0.1040 2.0831
4,0348 -0.2088 1.8743
0.3678 -0.0993 1.7750
1.0791 0.0779 1.8529
4.6253 0.9813 2.8342
2.5675 -0.1298 2.7044
6.9561 -0.0153 2.6891
4.9539 0.1758 2.8649
0.0201 0.1977 3.0626
0.0424 0.0324 3.0950
0.7306 -0.1454 2.9496
0.1366 0.2421 3.1917
3.1023 -0.2848 2.9069
4.0651 -0.2780 2.6289
0.2947 -0.1014 2.7303
0.3993 -0.0002 2.7301
1.2287 -0.3191 2.4110
7.9266 0.0805 2.4915
2.3167 0.3073 2.7988
0.5358 0.0422 2.8410
0.1195 0.2265 3.0675
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Example 4 (Wiener-Levy Process). Let W(t) = u(t) + o W*(t), where
{w*(t), t > 0} is a Wiener-levy process (WLP) satisfying (i)

EW*(t) = 0; (ii) Coviw*(s), W*(t)} = min (s,t); (iii) it is Gaussian.

Let Zj = W(jA), that is one samples at times A, 27, ..., and
% = (Xl, S Xm) where Xj = Zj ~ Zj—l and ZO = 0. If u(t) =0,

the family of such processes is denoted by QWLPd); and if wu(t) = t,
then it is denoted by Q(WLPL).
In this example we illustrate the 2-sample detection procedure for

e K= X, e asisn against N+s: L F X, X, e QSISD

For WLP¢, wec chose (u,0,A) = (0, S, 0.1) and generated the first
set of data (Xl’ .93 Xm) {m = 15) as follows:

{1) Generate 30 N(0,1) observations,

(i) Generate 61, X . 615 U(0, 2m) observations,
(ii) Generate Rf, v s Rfs Exp. (1/2) observations.
(2) Let X? =R ¢cos B, X* =R sin 6 .
2m-1 m m m m m
(3) xJ! = 5/A x;« gives Xi, ..., X{, d.i.d. 1. vs. from N(0, 254).
(4) Xi = Z(A), Xé = Z2(20) - Z(d), ..., Xéo = Z(30A) - Z(29A) gives
J
2(jh) = Z X{, j =1, 2, ..., 30. This provides first-sample
i=1
(Xl’ X2, cees XlS)' By choosing (u(t),o,4) = (3t, 5,A = 0.5),

we generate similarly the second sample of observatioms (fromWLPL) which

is denoted by (Y,, Y Y

; T = .
10 You oo 15). Thus the BDT is 2Z (Xl’ B o0 XlS’
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Yl’ - YlS)' The probability laws for X and Y, respectively, are denoted
by 5?1 and 5{;. The plots of {X%} and {Z(jA)} for both processes

are shown in graphs 4 to 7. The Wilcoxon Rank-Sum Detector is given

below; and the Kolmogorov-Smirnov Detector is presented in Table 4.

(A) Wilcoxon Rank-Sum Detector. The data is as given in the first two

columns of Table 4. By using {Xj} we compute:

1,2, ..., 15} = {1,2,3,4,6,8,10,11,12,14,15,16,17 , 18, 21}

{R(|xj|), j

15
Detector: W YOR(|X.]) = 158.
j=1

Using a large sample approximation for m = n = 15, one gets

W- [n(m+mn +1)/2]
[mn(m + n + 1)/12]

W* = = -3.09; W* v N(0,1) asymptotically.

Decision Rule: Since W* < Za = -1.96, we conclude N + S.

/2

The conclusion is still the same if one chooses PFA o = .01.
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(B) Two-Sample Kolmogorov-Smirnov Detector for Wiener Levy Data

Table 4. Computations

Ordered Combined Data:

lz] (i)

15

las)™h T etz-1X] ()315) " e cz- 11 ()]

X1 (5) Y[ () i=1
0.0680 - 1/15
0.1644 - 2/15
0.2135 5 3/15
0.4502 ) 4/15
- 0.499 3/15
0.6046 - 4/15 o
- 0.7744 3/15 m=mn=15
0.9073 . 4/15 ~ . )
- 0.9714 3/15 sy = 52” [, (2)-G, (2) ]
1.1185 - 4/15
1.6135 - 5/15 ~
1.6879 - 6/15 = HoAls
- 1.6923 5/15 _ _
1.9042 - 6/15 doon; 025 = 7/15 (PFA=.05)
2.0984 - 7/15
2.2764 = 8/15 d = 8/15 (PFA=.01)
2.2999 . 9/15 m,n;.005
2.4765 - 10/15 [Critical values are from
- 2.6325 9/15 Conovor (1971, p. 399)
= 2.8479 8/15
3.285 - 9/15
- 3.4773 8/15 Decision Rule:
- 4.0665 7/15
- 4.3455 6/15 Decide N + S since
- 4.3518 5/15
5 6.6080 4/15 D _>d (a=.01).
s 7.2577 3/15 mn - m,n;o/2
- 8.0898 2/15
- 8.1427 1/15
- 8.5778 0
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